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Abstract
Symmetry analysis is combined with x-ray scattering experiments to investigate the lattice
modulation associated with the incommensurate magnetic structure in the case of a double-k
structure. The expansion of the free energy shows that the components of the magnetic structure
with propagation vectors k1 and k2 can couple via components of lattice modulations. It is
shown that the classical diffraction peaks reflecting a 2k propagation vector, associated with
magneto-elastic effects in single-k structures, will coexist with diffraction peaks with
propagation vectors k1 − k2 or k1 + k2. The existence of these latter peaks can be considered
as a signature of a double-k magnetic structure. In the case of the double-k modulated structure
of CeAl2, group theory is applied directly to the study of the charge modulation. An x-ray
scattering study of the 2k satellites shows that the lattice displacements of the two Ce sites of
the structure are antiparallel to each other, and perpendicular to the direction of the magnetic
modulation. We also confirm experimentally the existence of k1 + k2 satellites.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In the past 50 years, a large number of complex magnetic
structures have been solved using neutron diffraction or,
more recently, resonant x-ray magnetic scattering. Among
these are all kinds of non-collinear structures, as well as
incommensurate or multi-k structures. The determination
of the magnetic structure often requires the combination
of scattering experiments and symmetry considerations,
particularly in the case of non-collinear structures. Based
on the Landau theory of second order transitions, symmetry
analysis may be applied to magnetic structure resulting from
a second order magnetic phase transition. With the help of

6 Author to whom any correspondence should be addressed.
7 CNRS staff.
8 Present address: dr11, CNRS, BP166, 38042 Grenoble Cedex 9, France.

group theory, it constitutes a powerful tool which allows one
to establish relationships between the Fourier components of
the magnetic moments, and to determine the possible magnetic
structures allowed by the crystal symmetry.

The onset of magnetic order can lead to magnetostriction
effects which in turn induce the onset of charge modulation in
the material [1]. Conceptually, there are two mechanisms for
producing a density wave in the charge distribution. First, the
lattice may be periodically distorted, with each ion retaining
its equilibrium charge (strain wave). Second, there may be
a periodic excess and deficit of charge on the sites of an
undistorted lattice. In the literature, these two effects are
collectively referred to as charge density wave (CDW). We may
note here that the dominant contribution to the x-ray intensities
arises from the core electrons (the strain wave). In chromium,
strain wave effects (modulation of the atomic positions) and
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CDW effects (modulation of the charge distribution) could be
separated [2]. Such a distinction is beyond the scope of the
present paper. Here, only strain waves (lattice distortions) will
be considered.

The magnetostrictive interactions, and therefore the
corresponding displacements, are invariant in a general
reversal of the moments and, for a simple, single-k magnetic
structure, the period of the charge modulation is half the
period of the magnetic modulation, resulting in propagation
vectors 2k. This feature has been thoroughly studied e.g. in
chromium, using neutrons or x-rays [3–5] and can provide
a very convenient tool for the study of magnetic domain
populations [6], or magnetic propagation vectors [7, 8]. In
the case of a double-k magnetic structure, we will show that
components of the displacements are also expected, which
couple both propagation vectors of the magnetic structure
and give rise to satellite reflections with a propagation vector
k1 ± k2. Observations of such effects have been reported in
UAs [9].

Similarly to what is done in the determination of a
magnetic structure, symmetry analysis can be applied to the
study of a lattice modulation, to establish relationships between
the Fourier components of the atomic displacements. As an
application, we consider the double-k modulated structure of
CeAl2. The Kondo compound CeAl2 crystallizes in the MgCu2

cubic Laves phase (space group O7
h), with two Ce sites, Ce1 and

Ce2, at positions (1/8, 1/8, 1/8) and (−1/8, −1/8, −1/8). It
orders antiferromagnetically at low temperature (TN = 3.8 K).
The magnetic structure is a rather complex double-k structure
with propagation vectors of type (1/2 + δ, 1/2 − δ, 1/2), with
δ = 0.112 [11]. The 12 propagation vectors of the star of
k couple in pairs, like e.g. k1 = (1/2 + δ, 1/2 − δ, 1/2)

and k2 = (1/2 + δ, 1/2 − δ,−1/2), which gives rise to
6 k-domains. Coupled propagation vectors are the sum of
the same modulation part, e.g. (+δ,−δ, 0) and two different
antiferromagnetic parts, e.g. (1/2, 1/2, 1/2) and (1/2, 1/2,
−1/2), perpendicular to the modulation part. The Fourier
components mk1 and mk2 are in phase quadrature and are
aligned almost along the [1 1 1] and [1 1 1̄] diagonals,
respectively [12, 13]. There is also a phase difference between
the x , y and z components of each of the Fourier components
mk1 and mk2 . With these features, the Ce1 and Ce2 sublattices
order in elliptical helices. The helix axes are parallel to
the modulated part of the propagation vector, and the cerium
moments are slightly tilted away from the planes of the
ellipses [14].

While previous work was devoted to an ever better
understanding of the magnetic structure of CeAl2 [11–15],
the present paper deals with the associated magneto-elastic
distortion, first through a theoretical approach, via group
theory considerations, then from the experimental point of
view, using synchrotron x-ray scattering. The scope of
the paper is as follows. Section 2 presents the theoretical
frame of the study of the charge modulation in a double-
k structure. Group theory is then developed in the case of
CeAl2 in section 3. Section 4 is devoted to magnetic x-ray
scattering, which in our case was mainly used to optimize the
experimental conditions. Section 5 describes the study of the
charge modulation, and the results are discussed in section 6.

2. Magnetic and magnetostriction free energies for a
double-k structure

We summarize here the main results of the expansion of free
energy, detailed in the appendix.

In a magnetic structure, the magnetic moments can be
expressed as the sum of Fourier components, which, in the case
of a double-k structure, can be written:

mj(l) = mk1
j e−ik1·l + mk2

j e−ik2·l + c.c. (1)

The second order of the magnetic free energy deduced from
equation (A.4) (appendix) is then:

U0 =
∑

j j ′

∑

αβ

[
J j j ′αβ(k1)m

k1
jαm−k1

j ′β + J j j ′αβ(k2)m
k2
jαm−k2

j ′β

]
.

(2)
Equation (2), underlines that, for a double-k structure, a
Fourier component mk1 is associated only with m−k1 , and not
with the Fourier component mk2 of the equivalent vector k2.

Now considering the displacements induced by the mag-
netic strains, we extend the expansion of the magnetostrictive
free energy for a double-k structure to the fourth order in the
magnetic moments m to include the magneto-elastic coupling,
following [1]. The leading order terms in the displacement
components are second order in m and first order in the dis-
placement vectors u:

U1 = Uk1k1
1 + Uk2k2

1 + Uk1k2
1 + Uk2k1

1 . (3)

The expressions of Ukiki

1 and U
kikj

1 (i, j = 1, 2), given in the
appendix, lead to different types of propagation vectors k′′ of
the strain wave.

(A) For interactions involving magnetic components of the
same propagation vector:

k′′ = ±2k1 (or, equivalently, ± 2k2) or

k′′ = 0.

k′′ = 0 will not be considered any further: it corresponds
to an overall expansion or compression of the crystal,
which is outside the scope of the present paper. For
k′′ = ±2k1, we confirm what has already been stated
in the introduction: in the expansion of the free energy,
we expect a displacement term which couples with the
magnetic moments and corresponds to a propagation
vector twice that of the magnetic structure. The
contribution to the magnetostrictive free energy Uk1k1

1 ,
resulting from the coupling of the propagation vector k1

with itself is:

Uk1k1
1 =

∑

j j ′ j ′′

∑

αβγ

B j j ′ j ′′αβγ (k1)
{
mk1

jαmk1
j ′βu−2k1

j ′′γ

+ m−k1
jα m−k1

j ′β u2k1
j ′′γ + mk1

jαm−k1
j ′β u0

j ′′γ
}
. (4)

(B) For interactions involving magnetic components of the
different propagation vectors:

k′′ = ±(k1 + k2) or

2
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k′′ = ±(k1 − k2),

which gives for this contribution (Uk1k2
1 , equation (A.16))

to the free energy:

Uk1k2
1 =

∑

j j ′ j ′′

∑

αβγ

C j j ′ j ′′αβγ (k1,k2)

× {
mk1

jαmk2
j ′βu−(k1+k2)

j ′′γ + m−k1
jα m−k2

j ′β u(k1+k2)
j ′′γ

+ mk1
jαm−k2

j ′β u−(k1−k2)
j ′′γ + m−k1

jα mk2
j ′βu(k1−k2)

j ′′γ
}
. (5)

The other fourth order terms, which are either purely magnetic,
and fourth order in the magnetic components, or related to
the strain wave only, and second order in the displacements
components, will be neglected, as developed in the appendix.

As a conclusion, in the second order expansion of
the magnetic free energy in a multi-k structure, a Fourier
component of the magnetic moments can only couple to a
another component of the same propagation vector. Now
introducing the displacements, the magnetic components of the
two different propagation vectors associated in the double-k
magnetic structure can couple via a component of displacement
in the fourth order term of the free energy. As a consequence,
due to the charge modulation associated with the magnetic
structure, one can expect charge satellites corresponding to
either k1 +k2 or k1 −k2 propagation vectors. This is different
from the observation of resonant magnetic scattering at the
same positions in multi-k magnetic structures, which is due
to second order terms in the resonant magnetic cross section,
as pointed out in [9, 10]. The existence of non-resonant k1±k2

satellites may be considered as a new signature of multi-k
magnetic structures.

3. Symmetry analysis in the case of CeAl2

Once the values of the propagation vector k′′ of the lattice
modulation are selected, one has to determine the possible
components uk′′

j ′′γ for which the magnetostriction free energy
U1 is invariant in any symmetry operations of the group which
leaves k′′ invariant. This is actually the group which transforms
the Fourier components uk′′

j ′′γ into themselves. This little group
GC

k′′ is constituted of the symmetry elements of the usual little
group Gk′′ , plus the symmetry elements obtained with the
inversion I (h25) associated with the conjugation C operators.
Both I and C change k into −k, but their product keeps the
propagation vector unchanged [16].

The polynomials U1 can be considered as vectors which
span a vectorial space M ⊗ M ⊗ U with monomials of type
mk

jαmk′
j ′βuk′′

j ′′γ for basis vectors. The way the operators hi of
GC

k′′ transform these basis vectors provides a set of matrices
corresponding to a co-representation �. � is reducible and can
be decomposed into irreducible co-representations λi , among
which λ1 is the trivial representation with all its characters χi

equal to 1. The polynomials U1, which remain invariant under
the symmetry operations of GC

k′′ , are those constructed with
the basis vectors of the trivial co-representation λ1 [17]. These
basis vectors are obtained with the help of the projection of all

Table 1. Relations between the magnetic Fourier components mk
jα in

the CeAl2 magnetic structure. The exact ones are from [14] and the
simplified ones (|mk

x | = |mk
z | = m and ϕ = 0) are used in this paper.

Exact magnetic structure Simplified structure

mk1
1x = |mk

x |eiϕ mk1
2x = −|mk

x |e−iϕ mk1
1x = m mk1

2x = −m
mk1

1y = |mk
x |e−iϕ mk1

2y = −|mk
x |eiϕ mk1

1y = m mk1
2y = −m

mk1
1z = |mk

z | mk1
2z = −|mk

z | mk1
1z = m mk1

2z = −m

mk2
1x = i|mk

x |eiϕ mk2
2x = i|mk

x |e−iϕ mk2
1x = im mk2

2x = im
mk2

1y = i|mk
x |e−iϕ mk2

2y = i|mk
x |eiϕ mk2

1y = im mk2
2y = im

mk2
1z = −i|mk

z | mk2
2z = −i|mk

z | mk2
1z = −im mk2

2z = −im

the monomials of space M ⊗ M ⊗ U onto the λ1 sub-space
using the projection operator:

P1 =
∑

i

χ∗
i (λ1)hi =

∑

i

hi . (6)

The Fourier components mk
jα and mk′

j ′β involved in the
monomials are actually not independent and their relationships,
which define the magnetic structure of CeAl2 [14], are
summarized in table 1. A simplified form, where the three x , y
and z components are considered as equal and where the phase
difference ϕ between them is neglected, is also given in table 1
and will be used here.

The different types of propagation vectors of the lattice
modulation are now considered separately. The following
analysis is restricted to one magnetic domain, with propagation
vectors k1 = (1/2 + δ, 1/2 − δ, 1/2) and k2 = (1/2 +
δ, 1/2 − δ,−1/2). The transposition to the other domains is
straightforward.

3.1. Interactions involving displacement components of the
same propagation vector: k′′ = ±2k1

The little co-group GC
2k1

which leaves k′′ = (2δ,−2δ, 0)

(equivalent to k′′ = (1 + 2δ, 1 − 2δ, 1) in the first Brillouin
zone) unchanged, contains 8 elements h1, h13, h28, h40, Ch25,
Ch37, Ch4 and Ch16 [18], listed in table 2. The projection
operator onto the trivial co-representation is:

P1
2k1

= h1+h13+h28+h40+Ch25+Ch37+Ch4+Ch16. (7)

The transformations of the different elements of the mk1
jα mk1

j ′β

u−2k1
j ′′γ monomials are given in table 2. The fractional

translations have been omitted in the table, as they cancel out
in the final product (factor e(−k1−k1+2k1)). Applying P1

2k1
to the

different monomials leads to the following three polynomials
which are invariant in GC

2k1
:

U 1
2k1

= m2
[
(u2k1

1z + u∗2k1
1z ) − (u2k1

2z + u∗2k1
2z )

]
, (8)

corresponding to antiparallel displacements of atoms Ce1 and
Ce2 along [001] in phase with the magnetic modulation.

U 2
2k1

= m2
[
(u2k1

1x + u∗2k1
1x ) + (u2k1

1y + u∗2k1
1y )

− (u2k1
2x + u∗2k1

2x ) − (u2k1
2y + u∗2k1

2y )
]
, (9)

3
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Table 2. Action of the operators hi of the little group GC
2k1

on the Fourier components m−k1
jα and u2k1

j ′′γ .

h1

(x, y, z)
h13

( ȳ, x̄, z̄)

h28

(x + 1
4 , y + 3

4 ,

z̄ + 1
2 )

h40

( ȳ + 1
4 , x̄ + 3

4 ,

z + 1
2 )

Ch25

(x̄, ȳ, z̄)
Ch37

(y, x, z)

Ch4

(x̄ + 3
4 , ȳ + 1

4 ,

z + 1
2 )

Ch16

(y + 3
4 , x + 1

4 ,

z̄ + 1
2 )

m−k1
1x = m −m−k1

2y = m −m−k2
2x = im m−k2

1y = −im m∗−k1
2x = −m −m∗−k1

1y = −m −m∗−k2
1x = −im m∗−k2

2y = im
m−k1

1y = m −m−k1
2x = m −m−k2

2y = im m−k2
1x = −im m∗−k1

2y = −m −m∗−k1
1x = −m −m∗−k2

1y = −im m∗−k2
2x = im

m−k1
1z = m −m−k1

2z = m m−k2
2z = im −m−k2

1z = −im m∗−k1
2z = −m −m∗−k1

1z = −m m∗−k2
1z = −im −m∗−k2

2z = im

m−k1
2x = −m −m−k1

1y = −m −m−k2
1x = im m−k2

2y = −im m∗−k1
1x = m −m∗−k1

2y = m −m∗−k2
2x = −im m∗−k2

1y = im
m−k1

2y = −m −m−k1
1x = −m −m−k2

1y = im m−k2
2x = −im m∗−k1

1y = m −m∗−k1
2x = m −m∗−k2

2y = −im m∗−k2
1x = im

m−k1
2z = −m −m−k1

1z = −m m−k2
1z = im −m−k2

2z = −im m∗−k1
1z = m −m∗−k1

2z = m m∗−k2
2z = −im −m∗−k2

1z = im
u2k1

1x −u2k1
2y u2k1

2x −u2k1
1y −u∗2k1

2x u∗2k1
1y −u∗2k1

1x u∗2k1
2y

u2k1
1y −u2k1

2x u2k1
2y −u2k1

1x −u∗2k1
2y u∗2k1

1x −u∗2k1
1y u∗2k1

2x

u2k1
1z −u2k1

2z −u2k1
2z u2k1

1z −u∗2k1
2z u∗2k1

1z u∗2k1
1z −u∗2k1

2z

Table 3. Action of the operators hi of the little group GC
k1+k2

on the Fourier components m−k1
jα , m−k2

jα and uk1+k2
j ′′γ .

h1 h28 Ch25 Ch4

(x, y, z) (x + 1
4 , y + 3

4 , z̄ + 1
2 ) (x̄, ȳ, z̄) (x̄ + 3

4 , ȳ + 1
4 , z + 1

2 )

m−k1
1x = m −m−k2

2x = im m∗−k1
2x = −m −m∗−k2

1x = −im
m−k1

1y = m −m−k2
2y = im m∗−k1

2y = −m −m∗−k2
1y = −im

m−k1
1z = m m−k2

2z = im m∗−k1
2z = −m m∗−k2

1z = −im

m−k1
2x = −m −m−k2

1x = im m∗−k1
1x = m −m∗−k2

2x = −im
m−k1

2y = −m −m−k2
1y = im m∗−k1

1y = m −m∗−k2
2y = −im

m−k1
2z = −m m−k2

1z = im m∗−k1
1z = m m∗−k2

2z = −im

m−k2
1x = −im −m−k1

2x = m m∗−k2
2x = im −m∗−k1

1x = −m
m−k2

1y = −im −m−k1
2y = m m∗−k2

2y = im −m∗−k1
1y = −m

m−k2
1z = im m−k1

2z = −m m∗−k2
2z = −im m∗−k1

1z = m

m−k2
2x = −im −m−k1

1x = −m m∗−k2
1x = im −m∗−k1

2x = m
m−k2

2y = −im −m−k1
1y = −m m∗−k2

1y = im −m∗−k1
2y = m

m−k2
2z = im m−k1

1z = m m∗−k2
1z = −im m∗−k1

2z = −m

u(k1+k2)

1x u(k1+k2)

2x −u∗(k1+k2)

2x −u∗(k1+k2)

1x

u(k1+k2)

1y u(k1+k2)

2y −u∗(k1+k2)

2y −u∗(k1+k2)

1y

u(k1+k2)

1z −u(k1+k2)

2z −u∗(k1+k2)

2z u∗(k1+k2)

1z

corresponding to antiparallel displacements of atoms Ce1 and
Ce2 along [110], in phase with the magnetic modulation, and

U 3
2k1

= m2
[
(u2k1

1x − u∗2k1
1x ) − (u2k1

1y − u∗2k1
1y )

+ (u2k1
2x − u∗2k1

2x ) − (u2k1
2y − u∗2k1

2y )
]
, (10)

corresponding to parallel displacements of atoms Ce1 and Ce2

along [11̄0], in quadrature with the magnetic modulation.
The actual displacements are all the linear combinations

of U 1
2k1

, U 2
2k1

and U 3
2k1

. We note that the direction of the
lattice modulation is related only to the incommensurate part
τ = (δ,−δ, 0) of the propagation vectors. In the first two
cases (8) and (9), the lattice modulation and the magnetic
modulation are in phase, and the displacements of both Ce sites
are antiparallel, along a direction perpendicular to τ while, in
the third case (10), the modulations are in quadrature, and the
displacements are parallel, along τ .

3.2. Interactions involving the sum of the two propagation
vectors of the double-k structure: k′′ = ±(k1 + k2)

The magnetic little group GC
k1+k2

which leaves k′′ = (1 +
2δ, 1 − 2δ, 0) unchanged contains only the 4 symmetry
elements h1, h28, Ch25 and Ch4 [18]. To project all the

monomials of the most general expression of Uk1+k2 onto the
trivial co-representation λ1, we use the projection operator:

P1
k1+k2

= h1 + h28 + Ch25 + Ch4. (11)

The transformations of each term of the monomials of type
mk1

jαmk2
j ′βu−(k1+k2)

j ′′γ are given in table 3. One obtains six
polynomials which are invariant in GC

k1+k2
:

U 1
k1+k2

= im2
[
(u(k1+k2)

1x + u∗(k1+k2)
1x )

− (u(k1+k2)

2x + u∗(k1+k2)

2x )
]
, (12)

U 2
k1+k2

= im2
[
(u(k1+k2)

1x − u∗(k1+k2)

1x )

+ (u(k1+k2)

2x − u∗(k1+k2)

2x )
]
, (13)

U 3
k1+k2

= im2
[
(u(k1+k2)

1y + u∗(k1+k2)
1y )

− (u(k1+k2)

2y + u∗(k1+k2)

2y )
]
, (14)

U 4
k1+k2

= im2
[
(u(k1+k2)

1y − u∗(k1+k2)
1y )

+ (u(k1+k2)
2y − u∗(k1+k2)

2y )
]
, (15)

U 5
k1+k2

= im2
[
(u(k1+k2)

1z + u∗(k1+k2)

1z )

− (u(k1+k2)
2z + u∗(k1+k2)

2z )
]
, (16)

4
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U 6
k1+k2

= im2
[
(u(k1+k2)

1z − u∗(k1+k2)

1z )

+ (u(k1+k2)

2z − u∗(k1+k2)

2z )
]
. (17)

The actual displacements are all the linear combinations of
these six polynomials. The displacements are such that the x ,
y and z components of the same atom are not coupled. The
amplitudes are the same for atoms Ce1 and Ce2, but with a
phase difference.

3.3. Interactions involving the difference of the two
propagation vectors of the double-k structure:
k′′ = ±(k1 − k2)

The little group Gk′′=(001) which leaves k′′ = (0, 0, 1)

unchanged contains 16 symmetry elements h1, h2, h3, h4, h13,
h14, h15, h16, h25, h26, h27, h28, h37, h38, h39, and h40 [18]. As
in the previous cases, one has to project all the m−k1

jα mk2
j ′βuk1−k2

j ′′γ
monomials onto the trivial representation λ1. However,
within this symmetry, neither the little group Gk′′=(001),
nor the magnetic little group GC

k′′=(001), have any trivial

representation [18]. As a consequence, no displacement uk1−k2
j ′′γ

which keeps monomials of type m−k1
jα mk2

j ′βuk1−k2
j ′′γ invariant

under all the symmetry operation of the group GC
k′′=(001) can

exist.

4. X-ray magnetic scattering

Cerium, with only one 4f electron in the magnetic state Ce3+
and small magnetic moments is a rather poor candidate for x-
ray magnetic scattering studies, and only very few examples
are found in the literature [19–22]. The case of CeAl2 is even
more delicate due to its reduced moments (≈0.7 μB compared
to the free ion value of 2.14 μB) and to the presence of 6
magnetic k-domains. However, CeAl2 is a typical example
of a complex incommensurate magnetic structure and it was
felt important to test the above formalism against experimental
evidence in this compound.

4.1. Experiments

The experiments were performed at the magnetic scattering
beamline ID20 of the ESRF [23], on a single crystalline platelet
(about 4 × 6 × 3 mm3), cleaved perpendicular to a [111]
direction. The original ingot was grown using the Bridgman
method. The beamline was tuned to different energies below
or close to the cerium L2 and L3 absorption edges.

The sample was mounted in a liquid helium cryostat,
which imposed a horizontal plane scattering geometry. The
horizontal incident beam polarization was then parallel to the
scattering plane (π polarization). The sample was oriented
with its [112̄] axis vertical, in order to have both the (111)

and the (11̄0) reflections in the horizontal scattering plane,
which gives access to the magnetic reflections from a single
magnetic domain with a propagation vector k = (1/2 + δ,
1/2 − δ, 1/2). Keeping the sample temperature below the
Neel temperature (TN = 3.8 K) turned out to be delicate
because of the heat load on the sample: at 5.227 keV,
below the cerium L edges, with an incoming flux of 2 ×

Figure 1. (Top panel) Energy dependence of the (3.5 + δ, 3.5 − δ,
3.5) magnetic reflection around the Ce L2 edge, obtained by scanning
the photon energy with a constant scattering vector. The background,
measured just away from the peak, has been subtracted. (Bottom
panel) Energy dependence of the measured fluorescence.

1013 photons s−1 at 200 mA, resulting in a power density of
about 8–12 mW mm−2, the magnetic intensity vanished within
about two minutes of the beam opening, due to sample heating
at the surface. The problem was overcome by attenuating the
incident beam by a factor 16, hence reducing the photon flux to
1.3×1012 photons s−1 at 200 mA. Even with these precautions,
signals related to the long range magnetic order vanished at
a sensor temperature of 2.7 K, indicating a difference of at
least 1 K between the temperature of the illuminated sample
spot and the temperature measured on the sample holder, at
the magnetic phase transition. The measurements were then
performed at the lowest reachable cryostat temperature, 1.8 K,
with unsaturated moments.

We first checked the magnetic order by looking
for resonant magnetic scattering at the cerium L2 edge
(6.164 keV). We used the (220) reflection of a LiF crystal
for polarization analysis, which is very well suited at the
L2 edge, with a Bragg angle of 44.94◦. Scanning in the
reciprocal space with counting times of 30 seconds/point,
we could observe the (3.5 ± δ, 3.5 ∓ δ, 1.5), (2.5 ±
δ, 2.5 ∓ δ, 2.5), and (1.5 ± δ, 1.5 ∓ δ, 1.5) magnetic
satellites in the rotated π–σ polarization channel, with
peak intensities of ≈20, 0.5, and 0.07 photons s−1. The
observed value of δ = 0.112, is consistent with earlier
neutron results. Figure 1 shows the energy dependence
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of the peak intensity of the (3.5 + δ, 3.5 − δ, 3.5)
reflection, together with the measured fluorescence. The
maximum of the resonance is observed at 6.168 keV, close
to the energy of the maximum fluorescence. No signal was
observed in the unrotated π–π polarization channel.

At the L3 edge (5.73 keV), using the same analyzer
(although it is slightly less convenient here, with a Bragg angle
of 49.53◦) we observed only an extremely weak magnetic
signal (about 1 photon s−1) at the (3.5 + δ, 3.5 − δ, 3.5)
position, in the rotated π–σ polarization channel. This signal
is observed close to the energy of the maximum absorption and
vanishes above and below, like at the L2 edge.

We also looked for non-resonant magnetic scattering, at
an incident photon energy of 5.227 keV, below the cerium L
edges, where we could use the (004) reflection from a pyrolytic
graphite crystal for polarization analysis. No magnetic signal
could be observed, at either the (1.5 ± δ, 1.5 ∓ δ, 1.5) or the
(2.5 ± δ, 2.5 ∓ δ, 2.5) positions.

4.2. Discussion

Resonant x-ray magnetic scattering is interpreted in terms of
electric multipole transitions between a core level and a spin
(or orbit) polarized empty state above the Fermi level [24].
With incident π polarization and collinear Fourier components
of the moments along the scattering vector Q (which is a
good approximation for the considered reflections), resonant
magnetic scattering is only expected in the π–σ polarization
channel with scattering amplitude:

FE1
res = 4π

|k|
∑

site Ce j

eiQ·r j (−i sin θ(F (1)

E1 )), (18)

FE2
res = 4π

|k|
∑

site Ce j

eiQ·r j

× (−i sin θ(F (1)

E2 cos2 θ + F (3)

E2 cos 2θ)), (19)

for dipole (E1) and quadrupole (E2) resonances, respectively.
θ is the Bragg angle and r j are the atomic positions. The
amplitude factors F (n)

EL contain the physics of the resonant
process, including the resonant denominator. We note that, in
a localized picture of the resonant process, F (n)

EL are deduced
from atomic calculations [25], which should in our case take
into account the modulated character of the magnetic structure.
A simple assumption is that the spin and the orbit both follow
the same sinusoidal intensity modulation, resulting in a similar
modulation of the amplitude factors. For first order terms, this
is mathematically equivalent to applying the modulation to the
unit vector z in the direction of the moments, as in [26].

Around the cerium L2,3 edges, the E1 resonance is
expected to dominate the resonant magnetic signal [25].
The fact that, at both edges, the resonance consists in
a single peak observed at a photon energy close to the
energy of the maximum absorption is consistent with that
prediction, as opposed to the multi-peak resonances observed
in Ce(Fe1−xCox)2, and attributed to either intermediate valence
or 4f–3d hybridization effects [22]. The simple dipole origin
is further confirmed by the observation of higher intensities
at larger Q: while the E2 amplitude (equation (19)) has

Figure 2. Polarization part of the dipole resonant cross section,
sin2 θ (line), compared to the measured integrated intensities at the
cerium L2 edge (divided by the structure factor (

∑
eiQ·r j )2, for easier

comparison).

a nonmonotonous angular dependence, the E1 amplitude
(equation (18)) increases continuously with θ , consistently
with the observation (see next paragraph).

Numerically, the integrated intensities of the measured 6
reflections were corrected for absorption and for Lorentz factor.
With incident π polarization, the charge scattering intensities
are affected by a factor cos2(2θ). The Lorentz correction
for scans in the reciprocal space is sin (θ + αH ), where αH

is the angle between the scan direction and the scattering
vector [27]. The absorption correction is proportional to (1 +
sin α/ sin(2θ −α)), where α is the angle between the incoming
beam and the sample surface. In a first approximation, we
neglected the resolution effects from the analyzer crystal, as
the x-ray beam from the undulator beamline ID20 is highly
collimated. This is a rough approximation in the case of an LiF
analyzer crystal with a narrow mosaic spread mosaic (≈0.02◦),
but acceptable here as long as we consider only orders of
magnitude. In figure 2, we compare the factor sin2 θ from
equation (18) with the integrated intensities divided by the
structural term (

∑
eiQ·r j )2 (= sin2 π/8 or cos2 π/8, depending

on the reflection). The results are consistent with resonant
intensities of dipole origin (E1 resonance), as expected.

In the case of non-resonant scattering, we again make
the reasonable approximation that the Fourier components of
the moments are close to the [111] direction, i.e. close to the
scattering plane. Non-resonant scattering is only expected in
the π–σ polarization channel, with a scattering amplitude:

Fπ−σ
non−res = ir0

h̄ω

mc2

∑

site Ce j

eiQ·r j (2 sin2 θ)

× [(L1 + S1) cos θ − S3 sin θ ] , (20)

where r0 is the classical electron radius and S and L the Fourier
transforms of the spin and orbital magnetic moments. The
indices 1 and 3 correspond to the projections along ki + kf

and ki − kf (=Q), respectively. For the magnetic reflections
(1.5 ± δ, 1.5 ∓ δ, 1.5) and (2.5 ± δ, 2.5 ∓ δ, 2.5), the
directions of mk and Q are both close to the [111] direction,
and L1 ≈ S1 ≈ 0, S3 ≈ SCe j = S. The scattering amplitude
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Figure 3. Scans along [11̄0] at the (2 + 2δ, 2 − 2δ, 2) charge
modulation satellite, in the π–π (triangles) and in the π–σ (circles)
polarization channels, measured at a photon energy of 5.227 keV.

simplifies to:

Fπ−σ
non−res ≈ r0

h̄ω

mc2
4 sin

π

8
sin3 θ S. (21)

At 5.227 keV, applying equation (21) and using the free
ion value S = 1/2 leads to scattering amplitudes 3.5 ×
10−4r0 and 1.1 × 10−3r0 for (1.5 ± δ, 1.5 ∓ δ, 1.5) and
(2.5 ± δ, 2.5 ∓ δ, 2.5), respectively. For comparison, the
calculated charge scattering amplitude of the (111) and (222)
reflections are |F(111)| = 51.4r0 and |F(222)| = 35.7r0

and the measured scattered intensities in the unrotated π–π

polarization channel are about 5200 photons s−1 (ph s−1) and
7500 ph s−1, respectively. These measurements required an
extra attenuation of the photon beam, by a factor 108 000 at
(111) or 5600 at (222). Corrected intensities, including a factor
cos 2θ for π polarization are of the order of 7 × 108 ph s−1

and 2 × 108 ph s−1, respectively. Assuming all 6 magnetic
k-domains are equally populated then leads to expected non-
resonant magnetic intensities in the π–σ polarization channel
of the order of 4×10−3 ph s−1 and 4×10−2 ph s−1 for (1.5±δ,
1.5∓δ, 1.5) and (2.5±δ, 2.5∓δ, 2.5), respectively. The (2.5±δ,
2.5 ∓ δ, 2.5) reflections could have been observed on top of a
measured background of 0.1 ph s−1 with long counting times.
However, the above calculation does not include the fact the
cerium moments are reduced by about a factor 3 as compared
to the free ion value, and that they are actually not saturated due
to sample heating at the surface (section 4.1). We also note that
the calculation involves normalizing intensities over 10 orders
of magnitude, which may not be accurate enough.

5. Lattice modulation: x-ray charge scattering

5.1. Experiments

The experiments were performed at the ID20 beamline of
the ESRF, first in the same conditions as the magnetic study,
section 4.1, then, with a second sample, in a four-circle
geometry, rendered possible by the use of a closed-cycle
refrigerator, equipped with an additional Joule–Thomson stage

Table 4. Magnetic domains of CeAl2, depending on the propagation
vectors k1 and k2.

Domains k1 k2

Domain 1a (1/2 + δ, 1/2 − δ, 1/2) (1/2 + δ, 1/2 − δ, −1/2)
Domain 1b (1/2 + δ, −1/2 + δ, 1/2) (1/2 + δ, −1/2 + δ, −1/2)
Domain 2a (1/2, 1/2 + δ, 1/2 − δ) (−1/2, 1/2 + δ, 1/2 − δ)
Domain 2b (1/2, 1/2 + δ, −1/2 + δ) (−1/2, 1/2 + δ, −1/2 + δ)
Domain 3a (1/2 + δ, 1/2, 1/2 − δ) (1/2 + δ, −1/2, 1/2 − δ)
Domain 3b (1/2 + δ, 1/2, −1/2 + δ) (1/2 + δ, −1/2, −1/2 + δ)

(base temperature 1.8 K). In the 2-axis scattering geometry, at
a photon energy of 5.227 keV, we could use the (004) reflection
of a graphite crystal for polarization analysis: it has a mosaic
spread of 0.2◦, which is much better suited than LiF to the
measurement of integrated intensities. Having only access to
a single propagation vector, we concentrated on a study of the
satellite reflections corresponding to a propagation vector 2k1

(section 5.2). We observed peak intensities of the order of a few
counts per second and could measure integrated intensities for
a quantitative analysis. In the 4-circle geometry, the beamline
was tuned to a slightly higher photon energy, 6.15 keV, just
below the cerium L2 edge, and we used the (220) reflection
from a LiF crystal for both polarization analysis and removal
of the fluorescence background from the cerium L3 edge.
Even in that more flexible geometry, using a slightly shorter
wavelength, we had to tilt the sample inside the cryostat,
with the surface normal making an angle of about 57◦ with
the rotation axis of the cryostat. That way, and making full
use of the four sample rotations (‘azimuthal geometry’), we
could access a larger number of non-specular reflections, from
all the 6 magnetic domains, listed in table 4. The thermal
contact with the sample surface was improved, and we could
use a higher photon flux (≈1013 ph s−1). With this, and
improved sample quality, the intensities of the reflections with
propagation vector 2k1 were then increased by almost two
orders of magnitude. We performed a systematic search for
charge modulation satellites corresponding to all three possible
propagation vectors 2k1 (section 5.2), k1 + k2 or k1 − k2

(section 5.3), for a more qualitative study.

5.2. Propagation vector 2k

5.2.1. Results. In the 2-axis geometry, scans in reciprocal
space were measured along the [11̄0] direction, at positions
(h ± 2δ, h ∓ 2δ, h), with h = 1–3. In the π–π

polarization channel, the scattered intensity was observed at
all the investigated satellites, whereas none was detected in
the π–σ configuration (figure 3). These intensities vanish
above TN, which proves the connection to the long range
magnetic order (figure 4). The energy dependence of the
(2 + 2δ, 2 − 2δ, 2) modulation satellite around the cerium
L2 edge is shown in figure 5. Although the statistics is rather
poor, we note that the energy dependence of this modulation
satellite is (slightly but undoubtedly) different from that of
the (222) charge Bragg peak, also shown in figure 5. Only
the aluminum atoms contribute to the (222) structure factor
and the energy dependence reflects only the variation of the
linear absorption coefficient. A different behavior, attributed
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Table 5. Integrated intensities of charge modulation satellites, measured at 5.227 keV. Intensities have been normalized to the monitor count
rate, and are given in ph Å

−1
/monitor. The correction in the case of the structural peaks (111) and (222) includes the extra attenuation (see the

text). The values of |u|/a if u‖[110] are equal to those for u‖[001] divided by
√

2.

Q Imeas Icor Fcalc/r0 Q · u |u|/a for u‖[001]
(111) 2.2 (2) × 103 8.7 (9) × 107 51.4
(222) 2.93 (2) × 102 9.0 (9) × 107 35.7
(1 + 2δ, 1 − 2δ, 1) 1.50 (7) 2.15 (10) 36.7 Q ·u 4.4 (1) × 10−5 6.9 (2) × 10−6

(1 − 2δ, 1 + 2δ, 1) 0.46 (5) 3.8 (4) 36.7 Q ·u 5.8 (3) × 10−5 9.3 (5) × 10−6

(2 + 2δ, 2 − 2δ, 2) 2.3 (3) 15 (2) 45.3 Q ·u 11.0 (6) × 10−5 8.8 (5) × 10−6

(2 − 2δ, 2 + 2δ, 2) 0.97 (4) 9.2 (4) 45.3 Q ·u 8.8 (2) × 10−5 7.0 (2) × 10−6

(3 + 2δ, 3 − 2δ, 3) 0.106 (13) 3.8 (4) 25.5 Q ·u 10.0 (6) × 10−5 5.3 (3) × 10−6

Figure 4. Scans along [11̄0] at the (2 + 2δ, 2 − 2δ, 2) charge
modulation satellite at different temperatures, measured in the π–π
polarization channel, at a photon energy of 5.227 keV.

to diffraction absorption fine structure (DAFS) is generally
observed at the absorption edge of an element which does
contribute to the structure factor of the studied reflection. The
observed energy dependence of the reflection is then consistent
with our assumption that it comes mainly from a charge
modulation related the Ce atoms, induced by the magnetic
modulation.

Table 5 summarizes the integrated intensities of the
observed charge modulation satellites, as well as those of the
(111) and (222) structural Bragg peaks, measured for scaling,
with some additional attenuation of the photon beam by a
factor 108 000 and 5 600, respectively. All intensities were
corrected for Lorentz factor and absorption, as described in
section 4.2. The calculated structure factors are also listed
in the table. We note a small discrepancy between the scale
factors obtained from either reflection: K = 2.3 × 104 and
1.6 × 104 at (111) and (222), respectively. This cannot be
related to extinction effects, as the stronger (111) reflection
would be more affected. However, the attenuations used at
either reflections differ by a factor ≈20, which may induce
errors in the normalization. On top of that, both reflections are
actually sampling regions of the crystal of different extensions,
and we can consider the agreement as reasonable here. To
reduce the latter effect on our analysis, we scale the charge
modulation intensities using the intensity of the structural
Bragg peak closest in the reciprocal space.

Table 6 gives the peak intensities measured in the 4-circle
geometry. Reflections are observed for all magnetic domains

Figure 5. Energy dependence of the (2 + 2δ, 2 − 2δ, 2) charge
modulation satellite and the (222) charge Bragg peak around the Ce
L2 edge. The background, measured just away from the peak, has
been subtracted. The intensities have been scaled to coincide below
the edge and allow easier comparison.

and they are systematically stronger for domain 1a, showing
that, in the second sample, all domains were populated,
although not equally. A more accurate determination on the
domain populations would be difficult, as each reflection is
sampling a different part of the crystal, with possibly different
domain populations. This would constitute a different study,
but would not affect the main conclusions of the present paper.

5.2.2. Discussion. The intensities representative of
the charge modulation satellites are directly related to
the amplitude of the modulation [28, 29]. Symmetry
considerations have shown that the displacements of sites Ce1

and Ce2 have components either parallel or antiparallel. We
can write the atomic positions as:

rlj = Ll + r0
j + ε juj sin(2k · Ll), (22)

with j = 1 or 2. Ll is a lattice vector, r0
j is the equilibrium

position of site j , and uj is the vector amplitude of the
modulation of wave vector 2k = (2δ,−2δ, 0). We use ε1 = 1
and ε2 = 1 or −1 for displacements parallel or antiparallel to
Ce1, respectively. The scattering amplitude at position Q in the
reciprocal space is given by the Fourier transform of the atomic
density:

Fmod(Q) = r0 fCe

∑

l, j

eiQ·rl j , (23)
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Table 6. Peak intensities observed for displacement reflections with k′′ = 2k1.

Domain h k l (H K L) ± k′′ N (cts s−1)

2k1 = (2δ,−2δ, 0) 5 + 2δ 1 − 2δ 1 (511)+ 130 (5)
Domain 1a 5 − 2δ 1 + 2δ 1 (511)− 90 (6)

6 + 2δ 2 − 2δ −2 (622̄)+ 134 (3)

2k1 = (2δ, 2δ, 0) 5 − 2δ 1 − 2δ 1 (511)− 1.3 (3)
Domain 1b 6 + 2δ 2δ −2 (602̄)+ <0.4

6 − 2δ 2 − 2δ −2 (622̄)− 8.5 (6)

2k1 = (0, 2δ,−2δ) 4 2δ −2δ (400)+ <0.1
Domain 2a 5 1 + 2δ 1 − 2δ (511)+ 8.5 (7)

5 1 − 2δ 1 + 2δ (511)− 1.1 (5)
6 2δ −2 − 2δ (602̄)+ <0.4

2k1 = (0, 2δ, 2δ) 4 2δ 2δ (400)+ <0.1
Domain 2b 6 2 + 2δ −2 + 2δ (622̄)+ 21 (1)

2k1 = (2δ, 0,−2δ) 4 + 2δ 0 −2δ (400)+ <0.2
Domain 3a 5 + 2δ 1 1 − 2δ (511)+ 14 (1)

6 + 2δ 0 −2 − 2δ (602̄)+ <0.3
6 + 2δ 2 −2 − 2δ (622̄)+ 16 (1)

2k1 = (2δ, 0, 2δ) 6 − 2δ 0 −2 − 2δ (602̄)− <0.3
Domain 3b

where fCe is the atomic form factor. Using the Jacobi–Anger
transformation, which uses the Bessel functions Jn ,

eiz sin φ =
+∞∑

n=−∞
einφ Jn(z), (24)

this transforms into:

Fmod(Q) = r0 fCe

+∞∑

n=−∞

∑

l

ei(Q+n2k)·Ll

×
∑

Ce1,Ce2

Jn(Q ·u j )e
iQ·r0

j , (25)

which is finite for Q + n2k a vector of the reciprocal lattice.
For small displacements, we can expand equation (23) using
the asymptotic form of the Bessel functions. The order n = 0
is the usual Thomson scattering. The first order corresponds to
satellites at positions G±2k (G being a node of the reciprocal
lattice), with structure factor

Fmod(Q) = r0 fCe

∑

Ce1,Ce2

[
Q ·u j

2
eiQ·r0

j

]
. (26)

Summing over the two cerium sites of CeAl2 in domain 1a
(2k = (2δ,−2δ, 0)) leads to, at Q = (hkl):

Fmod(Q) = r0 fCe(Q ·u) cos[(h + k + l)π/4], (27)

or

Fmod(Q) = ir0 fCe(Q ·u) sin[(h + k + l)π/4], (28)

for parallel or antiparallel Ce1 and Ce2 displacements,
respectively. This result is valid in any of the 6 magnetic
domains, using the proper permutations of indices in the
symmetry analysis.

We note that, in table 6, none of the satellites of the
(400) and (602̄) reflections was detected, which tends to show

that the strain wave involves only antiparallel displacements of
sites Ce1 and Ce2 (equation (28)). This is consistent with the
observation of scattered intensity at Q = (2 ± 2δ, 2 ∓ 2δ, 2),
which is allowed by equation (28) but for which equation (27)
gives zero intensity.

The structure factors are calculated using equation (28),
and listed as Fcalc in table 5. The calculation empirically
assumes all 6 domains equally populated. The amplitude of
the modulation is |u| = (Q · u/β) × a, where a is the
lattice constant and β a geometrical factor, the value of which
depends on the direction of the modulation. In domain 1a,
β = 2π(h + k)/

√
2 or β = 2πl for a modulation along (110)

or (001), respectively.
The resulting amplitude |u| of the displacements is of the

order of 5–9 × 10−6 lattice units. We may note that, as we
expect the order parameter of the charge modulation to follow
that of the magnetic structure, the amplitude of the modulation
may not be maximum in our experimental conditions, but the
order of magnitude should be right. The intensities of the
charge modulation satellites are seven orders of magnitude
smaller than those of the structural Bragg peaks, hence the need
for the dynamical range of a high intensity x-ray beam.

5.3. Propagation vector k1 ± k2

In the four-circle scattering geometry, we searched systemat-
ically for satellites from all 6 magnetic domains with prop-
agation vectors k′′ = ±(k1 + k2) and ±(k1 − k2). For
k′′ = ±(k1 + k2), we measured peak intensities, after ad-
justing the diffractometer angles to maximize the intensity and
subtracted the background measured away from the peak (ta-
ble 7). For k′′ = ±(k1 − k2), the propagation vector is of
type (001) (or (100) or (010)), and the possible reflections are
at the nodes of the simple cubic lattice, which are forbidden in
the faced centered cubic space group. These reflections were
centered using the harmonic wavelength λ/2, not completely
filtered out. In that case, the peak intensities, given in table 8
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Table 7. Peak intensities observed for displacement reflections with k′′ = k1 + k2.

Domains h k l (H K L) ± k′′ N (cts s−1)

k1 + k2 = (1 + 2δ, 1 − 2δ, 0) 5 + 2δ 1 − 2δ 0 (400)+ 2.5 (2)
Domain 1a 5 − 2δ 1 + 2δ 0 (620)− 0.92 (20)

k1 + k2 = (1 + 2δ, 1 + 2δ, 0) 4 + 2δ 2δ 1 (31̄1)+ 0.17 (10)
Domain 1b 5 + 2δ 1 + 2δ 0 (400)+ <0.10

k1 + k2 = (0, 1 + 2δ, 1 − 2δ) 4 1 + 2δ 1 − 2δ (400)+ 0.17 (10)
Domain 2a 5 2δ −2 − 2δ (51̄3̄)+ 2.5 (2)

5 2δ −2δ (51̄1̄)+ 8.8 (3)
5 −2δ 2δ (511)− 10.3 (4)

k1 + k2 = (0, 1 + 2δ, 1 + 2δ) 4 1 + 2δ 1 + 2δ (400)+ 3.8 (3)
Domain 2b 5 2δ −2 + 2δ (51̄3̄)+ 1.3 (2)

5 2δ 2δ (51̄1̄)+ 5.0 (3)
5 −2δ −2δ (511)− 3.9 (3)
6 1 + 2δ −1 + 2δ (602̄)+ 13.3 (5)

k1 + k2 = (1 + 2δ, 0, 1 − 2δ) 4 + 2δ 1 −2δ (311̄)+ 1.5 (2)
Domain 3a 5 + 2δ 0 1 − 2δ (400)+ 0.17 (10)

k1 + k2 = (1 + 2δ, 0, 1 + 2δ) 4 + 2δ 1 2δ (311̄)+ 0.33 (10)
Domain 3b

Table 8. Peak intensities observed for displacement reflections with
k′′ = k1 − k2.

Domains h k l (H K L) ± k′′ N (cts s−1)

k1 − k2 = (001) 6 2 1̄ (622̄)+ or (620)− <0.05
Domains 1a and 1b 5 1 0 (511̄)+ or (511)− <0.05

k1 − k2 = (100) 4 1 1 (311)+ or (511)− < 0.05
Domains 2a and 2b 5 0 0 (400)+ or (600)− <0.05

5 0 2̄ (402̄)+ or (602̄)− <0.05
6 1 1̄ (511̄)+ or (711̄)− <0.05

k1 − k2 = (010) 5 0 1 (51̄1)+ or (511)− 4.1(3)
Domains 3a and 3b 4 1 0 (400)+ or (420)− <0.05

are obtained by subtracting the background measured above
TN.

Table 7 shows that reflections corresponding to a
propagation vector k1 + k2 do exist, as expected. Intensities
were observed for all magnetic domains, with intensities
in most cases smaller than those observed for reflections
corresponding to a propagation vector 2k1.

Table 8 shows that the reflections corresponding to the
propagation vector (k1 − k2) do not exist, with the exception
of reflection (501). We note that this reflection, indexed as
either (51̄1)+ or (511)−, is found only in domains 3a and
3b. The equivalent reflections in the other 4 domains were
not detected. This is typical of multiple scattering effects, to
which we attribute the observation of the (501) reflection. This
anomaly set apart, table 8 confirms the predictions of group
theory: there are no reflections for a propagation vector of type
(k1 − k2).

6. Conclusion

Group theory is a recognized tool in the determination of
magnetic structures. We have extended its use to the study
of the associated strain wave. In the general case, it allows

one to predict the directions of the displacements. In multi-
k magnetic structures, strain waves with ‘simple’ 2k or
‘combined’ k1 ± k2 propagation vectors are predicted. In
the particular case of CeAl2, symmetry analysis has shown
that reflections corresponding to propagation vectors k1 + k2

are actually expected, while propagation vectors k1 − k2 are
forbidden. Only the use of symmetry arguments could explain
this absence of one type of combined propagation vectors.

More generally, differentiating a multi-k magnetic
structure from a single-k, multi-domain magnetic structure
is often a challenge. Using magnetic neutron scattering
for example, one must apply an external perturbation to try
and unbalance the potential domain populations. However,
failure to observe an effect may not be conclusive, and the
external perturbation may also modify the intrinsic magnetic
configuration. One can also use resonant x-ray magnetic
scattering and look for reflections with a k1 ± k2 propagation
vector, allowed by the second order term in the resonant
cross section. This may prove experimentally difficult, as the
intensity of the k1 ±k2 peaks is about two orders of magnitude
smaller than the simple k1 or k2 peaks [10]. Such peaks
are easily observed at the M4,5 edges of actinides, where the
resonance is huge. Observation will certainly be more difficult
for weaker resonances, like the L2,3 edges of rare earths, or K
edges of transition elements.

We have demonstrated that an original method consists
in taking advantage of the strain waves associated with the
magnetic structure. Only multi-k structures may lead to a
strain wave with a k1 ± k2 propagation vector. In the case
of CeAl2, where the amplitude of the strain wave is less than
10−5 lattice units, the observed intensities are of the same order
as the resonant magnetic intensities, whether for 2k or k1 + k2

propagation vectors, hence stronger than expected for second
order resonant magnetic intensities. This method also has the
advantage of not being restricted to particular elements and
absorption edges.
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Appendix. Free energy calculation

We investigate the coupling of the magnetic moments to
periodic lattice modulations. The most simple free energy
expansion than can describe such a system is fourth order in the
magnetic moments, including terms of second and fourth order
in the magnetic moments m and first and second order in the
periodic displacement vector u [1]. The positive coefficients
of the m4 and u2 terms ensure the stability of the system. The
m4 terms have been shown to be responsible for the double-
k character of the magnetic structure [15]. Upon crossing
the phase transition, the coefficient of the m2 term becomes
negative, leading to a minimum in the free energy at finite m.

The second order term in the expansion of the magnetic
free energy of a crystal in the paramagnetic state can be written:

U0 =
∑

ll′

∑

j j ′

∑

αβ

Jll′ j j ′αβm jα(l)m j ′β(l′) (A.1)

where the m jα(l) represent the components of the magnetic
moments m j (l), l and l′ labeling the crystal cell, j and j ′
the magnetic atom in the cell, and α and β the axes x , y
or z. Jll′ j j ′αβ are the exchange interactions between these
components of the magnetic atoms.

Introducing the Fourier expansion:

mj(l) =
∑

k

mk
j e−ik·l (A.2)

and the Fourier transform of Jll′ j j ′αβ :

J j j ′αβ(k) =
∑

l

Jll′ j j ′αβe−ik·(l−l′ ) (A.3)

the second order term of the magnetic free energy U0 becomes

U0 =
∑

j j ′

∑

αβ

∑

k

J j j ′αβ(k)mk
jαm−k

j ′β. (A.4)

Now looking for the possible displacements due to the
magnetic ordering below TN, we investigate the coupling of the
known magnetic structure to the elastic modulations. As such,
the magnetic order parameter may be treated as a constant
in the free energy, and only the elastic modulations as free
variables to be minimized. The first terms of the free energy
which couples the magnetic structure and the displacements of
the magnetic atom are linear in u and quadratic in m:

U1 =
∑

ll′l′′

∑

j j ′ j ′′

∑

αβγ

All′l′′ j j ′ j ′′αβγ m jα(l)m j ′β(l′)u j ′′γ (l′′) (A.5)

where u jα(l) represent the components of the displacements.
Similarly to what has been done for the moments

(equation (A.2)), the displacements can be written as a Fourier
expansion (sum over all possible k′′):

uj(l) =
∑

k′′
uk′′

j e−ik′′·l. (A.6)

Once the double-k magnetic structure is set up, the propagation
vectors k1 and k2 are well defined, and the magnetic moment

components are given by:

m jα(l) = m
k1
jαe−ik1·l + m

k2
jαe−ik2·l + c.c. (A.7)

The magnetostrictive free energy is composed of four terms:

U1 = Uk1k1
1 + Uk2k2

1 + Uk1k2
1 + Uk2k1

1 . (A.8)

The first two terms involve interactions between magnetic
components of the same propagation vector:

Uk1k1
1 =

∑

ll′l′′

∑

k′′

∑

j j ′ j ′′

∑

αβγ

All′l′′ j j ′ j ′′αβγ

× (mk1
jαe−ik1·l + m−k1

jα eik1·l)

× (mk1
j ′βe−ik1·l′ + m−k1

j ′β eik1·l′)uk′′
j ′′γ e−ik′′·l′′ . (A.9)

In the last two terms, the interactions between magnetic
components correspond to different propagation vectors:

Uk1k2
1 =

∑

ll′l′′

∑

k′′

∑

j j ′ j ′′

∑

αβγ

All′l′′ j j ′ j ′′αβγ

× (mk1
jαe−ik1·l + m−k1

jα eik1·l)

× (mk2
j ′βe−ik2·l′ + m−k2

j ′β eik2·l′)uk′′
j ′′γ e−ik′′·l′′ . (A.10)

Both expressions Uk1k1
1 and Uk1k2

1 are themselves the sum of
four terms.

In expression Uk1k1
1 , if we introduce e2ik1·l′′ e−2ik1·l′′ = 1 in

the first two terms and eik1·l′′ e−ik1·l′′ = 1 in the last two terms,
we obtain, for instance for the first of the four terms:
∑

k′′

∑

j j ′ j ′′

∑

αβγ

mk1
jαmk1

j ′βuk′′
j ′′γ

∑

l′′
e−i(k′′+2k1)·l′′

×
∑

ll′
All′l′′ j j ′ j ′′αβγ e−ik1(l−l′′ )e−ik1(l

′−l′′). (A.11)

Similarly in expression Uk1k2
1 , if we introduce ei(k1+k2)·l′′

e−(k1+k2)·l′′ = 1 and ei(k1−k2)·l′′ e−i(k1−k2)·l′′ = 1, the first of the
four terms becomes:
∑

k′′

∑

j j ′ j ′′

∑

αβγ

mk1
jαmk2

j ′βuk′′
j ′′γ

∑

l′′
e−i(k′′+k1+k2)·l′′

×
∑

ll′
All′l′′ j j ′ j ′′αβγ e−ik1(l−l′′ )e−ik2(l

′−l′′). (A.12)

The last sums
∑

ll′ correspond to double Fourier
transforms and can be expressed as:

B j j ′ j ′′αβγ (k1) =
∑

ll′
All′l′′ j j ′ j ′′αβγ e−ik1(l−l′′)e−ik1(l

′−l′′) (A.13)

and

C j j ′ j ′′αβγ (k1,k2) =
∑

ll′
All′l′′ j j ′ j ′′αβγ e−ik1(l−l′′)e−ik2(l

′−l′′)

(A.14)
quantities which are independent of l′′, but B j j ′ j ′′αβγ (k1)

is a function of the propagation vector k1 whereas
C j j ′ j ′′αβγ (k1,k2) depends on the two propagation vectors k1

and k2.

11
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Uk1k1
1 then reduces to three terms:

Uk1k1
1 =

∑

k′′

∑

j j ′ j ′′

∑

αβγ

B j j ′ j ′′αβγ (k1)

×
{

mk1
jαmk1

j ′βuk′′
j ′′γ

∑

l′′
e−i(k′′+2k1)·l′′

+ m−k1
jα m−k1

j ′β uk′′
j ′′γ

∑

l′′
e−i(k′′−2k1)·l′′

+ (mk1
jαm−k1

j ′β + m−k1
jα mk1

j ′β)uk′′
j ′′γ

∑

l′′
e−ik′′·l′′

}
(A.15)

and Uk1k2
1 is composed of four terms:

Uk1k2
1 =

∑

k′′

∑

j j ′ j ′′

∑

αβγ

C j j ′ j ′′αβγ (k1,k2)

×
{

mk1
jαmk2

j ′βuk′′
j ′′γ

∑

l′′
e−i(k′′+k1+k2)·l′′

+ m−k1
jα m−k2

j ′β uk′′
j ′′γ

∑

l′′
e−i(k′′−k1−k2)·l′′

+ mk1
jαm−k2

j ′β uk′′
j ′′γ

∑

l′′
e−i(k′′+k1−k2)·l′′

+ m−k1
jα mk2

j ′βuk′′
j ′′γ

∑

l′′
e−i(k′′−k1+k2)·l′′

}
. (A.16)

For interactions involving magnetic components of the same
propagation vector, the expression of Uk1k1

1 , equation (A.15),
shows that the sum over all the nodes of the lattice l ′′ is zero
unless the k-space vector in the exponential is a reciprocal
lattice vector, which means inside the first Brillouin zone:

k′′ = ±2k1 for the first two terms

k′′ = 0 for the third term.

For interactions involving magnetic components of the
different propagation vectors (Uk1k2

1 , equation (A.16)), the sum
over all the nodes of the lattice l” is zero unless:

k′′ = ±(k1 + k2) for the first two terms

k′′ = ±(k1 − k2) for the last two terms.

One should also consider the other fourth order terms,
which are either purely magnetic, and fourth order in m, or
related to the strain wave only, and quadratic in u. As the x-
ray diffraction study of the strain wave, section 5, is performed
in the non-resonant regime, the purely magnetic terms may
be neglected here. The simplest form of quadratic terms in
u would be uk · u−k∗, which is isotropic and thus does not
yield any insight on the symmetry of the problem, which we
are investigating. Higher order, anisotropic terms might do
that, but are beyond the scope of this work. The components
of uku∗k′

, which may be seen as frozen zero-energy phonon
modes, will also result in scattered intensity at positions 2k
or k1 ± k2 in the reciprocal space. This will not alter our
conclusions on the existence or not of the satellites resulting

from the magneto-elastic interaction, and one should just keep
in mind that the calculated displacements may actually be
renormalized.
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